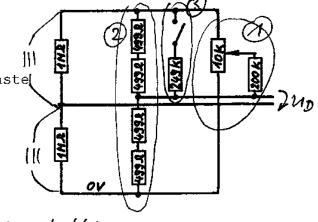

Fachhochschule Koblenz Blatt 1 von 5 Fachbereich Maschinenbau Messtechnik SS 04	Name MatrNr.				
Prof. Dr. W. Kröber	Aufgabe	erreichte Punkte			
Diese Prüfung besteht aus einem Fragenteil und einem Rechenteil. Zur Bewertung der Aufgaben muss der	Fragenteil				
gesamte Lösungsteil ersichtlich sein.	1	oen_			
- Bearbeitungszeit : 90 min - Erlaubte Hilfsmittel :	2	Löruger			
- Schreib- und Zeichengerät - Taschenrechner	3 <u>Z</u>	•X			
	4 <u>Y</u>				
	5				
Note:	6	FH Koblenz FB Maschinenbau © Prof. Dr. Kröber			
	Summe Y ₊ y	Messtechnik Prüfung 22.09.2004			
KURZFRAGEN:	L				
Jesp: Kein Problem (U negoth's, weum andere Richham Wednetop: Signal ist fleidigwichteks Signal, also sleb pusitiv = chue Westers wicht moglich 2. Wie wird die Richtungserkennung bei der digitalen Drehzahlerfassung mit Näherungsschaltern realisiert? (2P) [B] Zuei Stadte (A+3) nebaseinander Jewegung je nachdem, welcher zuerst betätigt -> Richtung ablesbar 3. Bei der Temperaturmessung mit einem Thermoelement (Empfindlichkeit sei 40 µV/°C) wird das Thermoelement direkt an ein Voltmeter angeschlossen. Die angezeigte Thermospannung beträgt 1,2 mV. Die Raumtemperatur beträgt 20°C. Wie groß ist die Temperatur des Thermoelementes? (2P) 11-K(nl-nlv) => nl=nlv + K=20°C+=50°C					
· · · · · · · · · · · · · · · · · · ·					
4. Nennen Sie ein präzises Temperaturmessverfahren auf Widerstandsbasis! Welche charakteristischen Daten besitzt das Verfahren? (2P)					
5. Mit welchen <u>Strömen</u> werden Messinforma	tionen übertr	agen? (1P)			
-20mA +20mA O20mA	420mA				
6. Mit welchen <u>Spannungen</u> werden Messinfo	rmationen übe	rtragen? (1P)			
Standard . = 10V 010V					

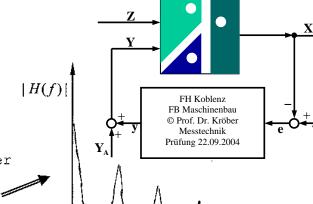
7. In der Abbildung sind verschiedene Funktionen zu kennzeichnen: (9P)

Nullpunkteinstellung(⁴)


- Ergänzungshalbbrücke (2)

Wo sind die DMS anzuschließen?

Wo ist der Abgriff für die Diagonalspannung?

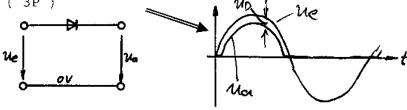

Wie muss welcher Widerstand verändert werden, wenn die Nullpunkteinstellung doppelt so empfindlich sein soll? 200K -> halbieren

8. In welchen Anwendungsfällen werden piezoelektrische Kraftaufnehmer eingesetzt/nicht eingesetzt ? Nennen Sie je ein typisches Beispiel! (2P)

eingesetzt: dyn. hohe Sleifigleit => Schnittliaftmessungu nicht eingesetzt: Hahich = Füllstandmessung (Bhalter paricht)

9. Von einer Kugel wird der Durchmesser gemessen und daraus das Volumen berechnet. Der Messfehler des Durchmessers der Kugel beträgt 0,1%. Wie groß ist der relative Fehler des Kugelvolumens? (2P)

10. Tragen Sie das Amplitudenspektrum der untenstehenden Funktion in das nebenstehende Diagramm ein! (3P)


0.3%

$$h(t) = \pi - 2 \cdot \left(\frac{\sin \omega t}{1} + \frac{\sin 2\omega t}{2} + \frac{\sin 3\omega t}{3} + \ldots\right)$$

11. An einem Druckmanometer (Messbereichsendwert 25 bar, Fehlerklasse 1.0) wird ein Wert von 10 bar abgelesen. Zwischen welchen beiden Werten kann der tatsächliche Druck liegen? (2P)

1% von 25 bow = 0,255av also: 9,75 box & p & 10,255ow

12. Auf die abgebildete Schaltung wirkt eine sinusförmige Eingangsspannung. Tragen Sie die Eingangs- und Ausgangsspannung in das Diagramm ein! (3P)

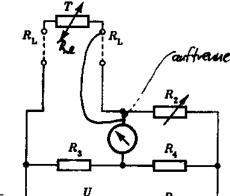
		_		_
RI	att	- 7	von	-5

13. Wie groß ist der übliche Widerstand eines DMS ? (1P

© Prof. Dr. Kröber Prüfung 22.09.2004

1202 (3502)

14. Wie groß ist die übliche Toleranz des k-Faktors ? (1P)


15. Der k-Faktor lässt sich aufspalten in einen "..." Anteil und einen Gefügeanteil. Wie lautet das fehlende Wort ? (1P)

Rometrischen Andeil

16. Wie groß sind die Innenwiderstände eines Voltmeters und eines Amperemeters ? (3P)

Voltmeter: 10MD Amperemeter: 22; 9/12

17. Welche Änderung muss an der Schaltung durchgeführt werden, damit eine Widerstandsänderung von R_L nicht in das Messergebnis eingeht? (3P)

18. Welches Temperaturmessverfahren wird durch die untenstehende Gleichung beschrieben? (3P)

$$R_T = R_0 \cdot e^{B(\frac{1}{T} \cdot \frac{1}{T_0})} \qquad \qquad \mathcal{NTC}$$

Um welchen Faktor ist die Empfindlichkeit höher als bei metallischen Widerstandsmesssytemen?

gromal

19. Eine Welle dreht mit 50 Hz. Welches Bild erhält man bei den angegebenen Blitzfrequenzen: (4P)

25 Hz: auch einfacher Tild 49 Hz: Welle dreht" mit 1 Hz in Drehnichtung

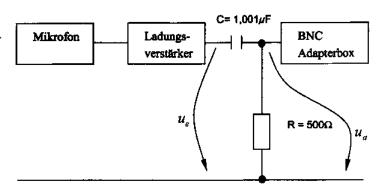
50 Hz: einfadies Bild

150 Hz: divertates Bild (120° varetzt")

20. Welche Möglichkeit gibt es die Größe eines zufälligen Fehlers zu quantifizieren/anzugeben? (1P)

Randardaswe chung

- 21. Der Betrag eines Frequenzganges sei |G|= 0,001. Wie groß ist dann das Amplitudenverhältnis in [dB]? (1P)
- 22. Bei einem Kalibriervorgang wird ein Temperatursensor zunächst in Eiswasser eingetaucht und die Anzeige auf $0^{
 m o}C$ eingestellt. Was ist jetzt noch zu tun? (3P)

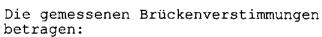

Vardarkhung einstellen (Zweipunkt Kalibrierung)

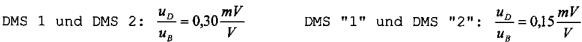
RECHENTEIL:

Aufgabe 1 (11P)

In einer Diplomarbeit wurde der abgebildete Hochpassfilter verwendet um den im Messsignal vorhandenen Konstantanteil zu eliminieren. Dabei sollten Frequenzinhalte im Bereich um 100 Hz nachgewiesen werden.

$$|G| = \frac{\hat{u}_a}{\hat{u}_e} = \frac{\omega \cdot R \cdot C}{\sqrt{1 + (\omega \cdot R \cdot C)^2}}$$

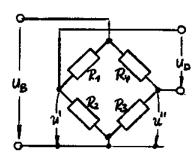

- a. Bestimmen Sie die Knickfrequenz in [Hz]!
- b. Um wie viel Prozent wird das "Nutzsignal" bei 100 Hz abgemindert?
- c. Worin liegt der grundsätzliche Fehler bei der Auslegung?
- d. Welche Werte für R und C würden Sie vorschlagen (Berechnen!), wenn die Knickfrequenz auf 1 Hz eingestellt werden soll?


Aufgabe 2 (8P)

An einem einseitig eingespannten Biegebalken (Breite $b=20\,\text{mm}$, Höhe $h=4\,\text{mm}$) wird mit einer Halbbrücke (DMS 1 und DMS 2) und einer weiteren Halbbrücke (DMS "1" und

einer weiteren Halbbrücke(DMS "1" und DMS "2") das Biegemoment an zwei unterschiedlichen Stellen erfasst.

Geg.: a = 40mm, k = 2, $E = 210000 \text{ N/mm}^2$

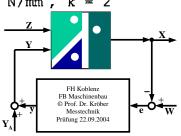


Wie groß sind der Abstand x und die Kraft F?

Hilfestellungen:

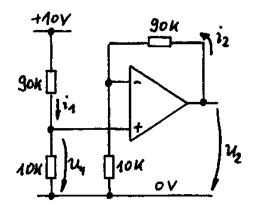
$$\frac{u_D}{u_B} = \frac{1}{4} \left(\frac{\Delta R_2}{R} + \frac{\Delta R_4}{R} - \frac{\Delta R_1}{R} - \frac{\Delta R_3}{R} \right) \qquad W_b = \frac{b \cdot h^2}{6}$$

Aufgabe 3 (6P)


Bei der experimentellen Bestimmung eines Drehmomentes wird eine Halbbrücke verwendet. Bei der Kalibrierung (lmV/V) wird ein Ausgangssignal von 5 V gemessen. Bei dem Belastungsfall ergibt sich ein Ausgangssignal von 3 V.

Weiter sind gegeben: Durchmesser Welle 12 mm, $G = 80000 \text{ N/mm}^2$, k = 2

Wie groß ist das Torsionsmoment bei dem Belastungsfall?


Hilfestellungen:

$$\varepsilon_{DMS} = \frac{\tau}{2 \cdot G} \qquad W_{\iota} = \frac{\pi}{16} d^3$$

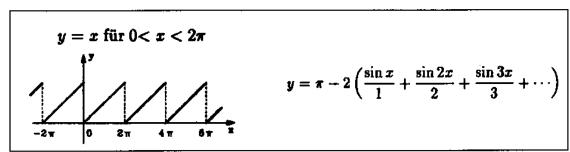
Aufgabe 4 (10P)

Von dem abgebildeten Messumformer sind die Ströme i_1 , i_2 sowie die Spannungen u_1 und u_2 zu bestimmen. Die Speisung des Operationsverstärkers erfolgt mit den üblichen Spannungen.

FH Koblenz FB Maschinenbau © Prof. Dr. Kröber Messtechnik

Messtechnik Prüfung 22.09.2004

Aufgabe 5 (7P)


Ein Temperatursensor verhalte sich wie ein System 1. Ordnung. Zum Zeitpunkt t=0 beträgt seine Temperatur $g=90^{\circ}C$. Nach 40s beträgt seine Temperatur $g=60^{\circ}C$. Welche Temperatur wird nach 80s angezeigt? Die Raumtemperatur sei $20^{\circ}C$.

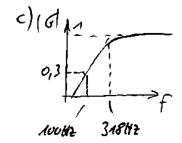
Hilfestellung: momentane Differenz = $e^{-\frac{t}{T}}$ Anfangsdifferenz

Aufgabe 6 (10P)

Im Bronstein (Taschenbuch für Mathematik) findet man die folgende Reihenentwicklung. Prüfen Sie die Richtigkeit des Konstantanteils und die Richtigkeit des Koeffizienten der Grundschwingung nach!

Auszug aus dem Taschenbuch:

Hilfestellung: $\int x \sin(ax) dx = -\frac{x}{a} \cos(ax) + \frac{1}{a^2} \sin(ax) + C$


Sei $\tilde{f}(x)$ eine periodische Tunktion der Periode 2L, dann Light sich $\tilde{f}(x)$ durch eine Reihenentwicklung approximieren:

$$f(x) = \frac{a_0}{2} + \sum_{i=1}^{n} a_i \cos(i \frac{\pi}{L} x) + \sum_{i=1}^{n} A_i \sin(i \frac{\pi}{L} x)$$
we be in
$$a_i = \frac{1}{L} \int_{i=1}^{n} f(x) \cos(i \frac{\pi}{L} x) dx$$

$$b_i = \frac{1}{L} \int_{i=1}^{n} f(x) \sin(i \frac{\pi}{L} x) dx$$

$$k = 2L - 1$$

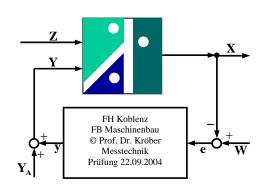
B)
$$\frac{1}{100} = \frac{\omega RC}{\sqrt{1 + (\omega RC)^2}} = \frac{211.100.500.1,001.10^{-6}}{\sqrt{1 + (ZTI.100.500.1,001.10^{-6})^2}} = 0.300$$

Abminderung 70%

Kume liest zu weit rechts, madizuweisen des

Signal wird zu stark" wegrefiltert

2000 0 a Vinanthussbehieb Bem.: 5002 = Kurzschlussbehieb


ol)
$$\omega = RC = 2\Pi f = 7 C = \frac{1}{2\pi \cdot f \cdot R}$$

Wahl $R = 10 \text{ KR} \rightarrow C = 15,92 \text{ nF} \rightarrow \text{if etwas in purple mene Wahl } C = 2 \text{ nF} \rightarrow R = 79,6 \text{ KR}$

22) Drs 1+2 - doppelde Sipral in Verfeich zu Drs "1"+"2" also muss sein x=20 = 80mm DMS 1+2:

$$\frac{v_0}{v_B} = \frac{1}{4} \left(\frac{sRz}{R} - sRz \right) = \frac{K}{4} \left(\frac{c_2 - E_1}{E_1} \right), E_1 = \frac{G_{52}}{E_1} = \frac{F \cdot x}{E_2}, G_1 = -E_2$$

$$\frac{v_0}{v_B} = \dots = \frac{3 \cdot K \cdot F \cdot x}{E_1 \cdot E_2} = \frac{v_0}{2} \cdot \frac{E_2 \cdot E_2}{3 \cdot K \cdot x} = \dots = \frac{42N}{2}$$

anderwfalls: 2 pl'n mit Unbekannten x und F

Lösungen Rrifung Merstedmik vom 22.08.04 1 Blatt 2

$$i_2 = \frac{u_2}{30k_1 + 10k_2} = \frac{u_1}{10k_1} = \frac{u_2}{10k_2} = \frac{10V}{100k_1} = \frac{10V}{100$$

202 Auf
$$=e^{-t/7}$$

Auf $=e^{-t/7}$

Auf $=-\frac{t}{R}$
 $=-\frac{t}{R}$

$$\frac{2\pi}{\sqrt{1-\frac{2\pi}{2}}} = \frac{2\pi}{\sqrt{2}}$$

The surproade => a1 = 0

$$2L = b - \alpha = 2\pi - 0 = \lambda L = \pi$$

$$b_{A} = \frac{1}{L} \int_{0}^{2\pi} f(x) \sin(1 \cdot L(x)) dx$$

$$= \frac{1}{L} \int_{0}^{2\pi} x \sin(x) dx$$

$$= \frac{1}{L} \left[-\frac{x}{L} \cos(x) + \frac{1}{L^{2}} \sin(x) \right]_{0}^{2\pi} = \frac{1}{L^{2}} \left[-2\pi \cos(2\pi) + \sin(2\pi) + 0 - 0 \right]$$