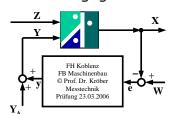
Fachhochschule Koblenz Blatt 1 v	on 5 Name	Name	
Fachbereich Maschinenbau Messtechnik WS 05/06 Prof. Dr. W. Kröber	MatrNr	MatrNr.	
Diese Prüfung besteht aus einem Fragenteil und einem Rechenteil. Zur Bewertung der Aufgaben muss der gesamte Lösungsteil ersichtlich sein.	Aufgabe	erreichte Punkte	
	fragentell		
	in. 1	ORN	
- Bearbeitungszeit : 90 min - Erlaubte Hilfsmittel : - Schreib- und Zeichengerät - Taschenrechner	2	thosungen	
	3		
	4 <u>Z</u>	•	
	5		
Note:	6	FH Koblenz	
	Summe ↓ O◀ v	FB Maschinenbau © Prof. Dr. Kröber	
KURZFRAGEN:	$Y_{\rm A}$ + $^{\rm J}$	Messtechnik Prüfung 23.03.2006	
Impulsfolgefrequenz in [Hz]? (2. Wie groß ist der zeitliche Mitte eines Monovibrators bei folgende Impulsdauer Monovibrator 5 ms, I Versorgungsspannung u _h = 15 V ? (4P) 5 ms	elwert des gemessene en gegebenen Daten: impulsfolgefrequenz	100 Hz,	
3. Weshalb müssen Schwebekörperdurc werden? (2P)	anungandersland, Anti	hies + Gewichtslast	
expist Auteire, of Konikhes Rober, Si	chwebeholie ist Maß fü	ir Dadefluss	
4. Wie groß ist die Standardabweich die zwei Messwerte $x_1 = 14$ und x_2 (3P) $ \sqrt{\frac{1}{2-1}(4^2+4^2)} = \sqrt{2^7} \approx $	ung, wenn (nur) = 16 vorliegen?	$S_x = \sqrt{\frac{1}{n-1} \sum_{n} (x_i - \overline{x})^2}$	
5. Der Durchmesser einer Kugel wird bestimmt. Wie groß ist dann der der relative Fehler des Volumens And Coberfläche: 1% (44-2.49)	relative Fehler der der Kugel? (3P)	Oberfläche und	
6. Ein Messgerät zeigt bei mehrmalig an (z.B. durch einen systematisc Messwerte stets gleich. Dann bes Wie lautet das fehlende Wort? (hen Fehler), jedoch itzt es eine gute .	sind die	

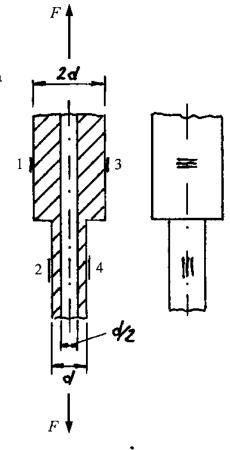
7.	Nennen Sie je zwei Durchflussmessverfahren: (6P)			
	Verdrängerprinzip: Ovalvadzahler, Drehkelsenpostahler, Zahurad molor			
	Umlenkung der Strömung: Mesturbine (2.3. Wolfmann zahlen), Rujelradauemounder			
	Wirkdruckverfahren: <u>Messleude</u> , (Vartusi-)dire			
8.	Welche Materialpaarungen werden bei den Thermoelementen K-Typ und J-Typ verwendet? (3P)			
	K-Typ: Ni (r-Ni J-Typ: Te-Koustautan CuNi			
9.	Welche Thermospannung wird gemessen, wenn die zu messende Temperatur $80^{\circ}C$ beträgt (Thermoempfindlichkeit sei $40\mu V/^{\circ}C$, Raumtemperatur sei $20^{\circ}C$)? (2P) $40\mu V/^{\circ}C$ (80°C-20°C) = 2,40 $\mu V/^{\circ}C$			
10.	. Die Auflösung eines 16bit A/D-Wandlers beträgt 0,305mV, die Thermoempfindlichkeit eines Thermoelementes $40\mu V/^0C$. Wie groß ist			
	die umgerechnete Auflösung in ${}^{\circ}C$, wenn keine weitere gesonderte Signalverstärkung vorliegt? (3P)			
	$0.04 \text{ mV} \stackrel{?}{=} 1^{\circ}C$ $0.505 \text{ mV} \stackrel{?}{=} x = 7.625^{\circ}C$			
11.	Erläutern Sie, weshalb bei der Temperaturmessung mit einem Pt100 durch den Messstrom ein positiver systematischer Messfehler entsteht! (2P) R. 7 heit Suov aut, abgebruer Warmetonn erfadat			
	When temperatur, Whentemparatur = systematischer Messfehler			
12.	Welche Aufgaben haben die abgebildeten Schaltungen? (6P)			
	FH Koblenz FB Maschinenbau Prüfung 23.03.2006 YA			
	Messumformer U/J Kompavatormit Investierander Vantorikan Hysterese mit Tiefpustritter			
	v ,			
13.	In welcher Größenordnung ist die Bürde beim Messen eines Stromsignals? (2P)			
	Die Skizze zeigt eine einfache Spannungs- stabilisierung mit zwei Zenerdioden (ZPD5.6). Ergänzen Sie die Anschlussverbindungen des Voltmeters, damit das Voltmeter -11,2V anzeigt!			

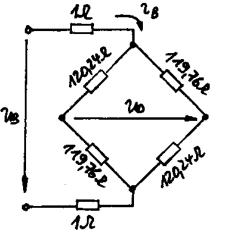
15.	Worin unterscheiden sich potenti induktiven Wegaufnehmern (ind.)		
۲	Preis für Aufnehmer plus Verstär	ker (Größenord	nung/Relation):
L	pot.: ab ax. 200 €	ind.: >10	000 €
٢	Mit welchem Signal werden die Au		
Ĺ	pot.: Gleidespannung	ind .: Wecker	spannun f (Trajentragnam)
	Eignung für raue Umgebungsbeding		
Ĺ	pot.: <u>neiu</u>	ind.:	k
16.	Bei der Drehmomentenmessung wird müssen die DMS auf der Welle ang DMS in Längsachse, der andere DM	eordnet werden 3 genau quer da	(Antwortbeispiel: ein
	± 45° zur Längsan	ke	
17.	In welcher Art und Weise wirkt s	ich das Totvolu	
	-> Duckspilzen waden abpunischen	t, System wine	l' weither (auch trajer)
18.	Weshalb besitzen Druckmanometer jedem Fall ein Totvolumen? (2P	(hier Basis: "E	
19.	Welches besondere Problem ergibt verstärkern (piezoelektrische Me		
	Keine statistien Merangy n	ropiela Dorif	<i>f</i>)
20.	Der Mensch kann Frequenzen bis ma Abtastfrequenz muss das Signal da 20kHz sicher nachgewiesen werden	aximal 20kHz hö ann mindestens	ren. Mit welcher erfasst werden, damit
	40 KHZ =		Y X
R E	CHENTEIL		FH Koblenz FB Maschinenbau © Prof. Dr. Kröber
Auf	gabe 1 (9P)		Messtechnik Prüfung 23.03.2006
(Rau Bei	einem Versuch zur Temperaturmessu umtemperatur sei 20°C) wird ein Wa ausgeschalteter Heizung dauert es Cabgesunken ist.	asserbehälter a 3 2 Minuten bis	uf 70°C aufgeheizt. die Temperatur auf
a. 1	Wie groß ist die Zeitkonstante?		stellung: mentane Differenz = $e^{-\frac{t}{T}}$
7	Wie lange dauert es (gerechnet von Ausschalten der Heizung), bis die Temperatur 45°C beträgt?		$\frac{\text{hentane Differenz}}{\text{fangsdifferenz}} = e^{-T}$

Aufgabe 2 (12P)

Mit dem rotationssymmetrischen Drehteil soll die Zugkraft F gemessen werden. Die oben liegenden DMS sind quer, die unten liegenden DMS längs angeordnet. Ermitteln Sie eine Gleichung zur Ermittlung der Brückenverstimmung!

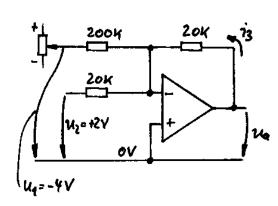

$$\frac{u_D}{u_B} = \frac{1}{4} \left(\frac{\Delta R_2}{R} + \frac{\Delta R_4}{R} - \frac{\Delta R_1}{R} - \frac{\Delta R_3}{R} \right) \qquad \frac{\Delta R}{R} = k \cdot \varepsilon$$


Aufgabe 3 (12P)


Die abgebildete Messbrücke wird mit einer Spannung von $u_{\scriptscriptstyle B}=5$ V gespeist. Der Leitungswiderstände von Zu- und Rückleitung betragen jeweils 1 Ω . Durch eine vorliegende Biegebeanspruchung haben sich die Nennwiderstandswerte der DMS um 0,24 Ω verändert. Die konkreten Widerstände sind in der Skizze angegeben.

Wie groß sind:

- a. Gesamtwiderstand,
- b. Gesamtspeisestrom $i_{\scriptscriptstyle B}$,
- c. Diagonalspannung up?

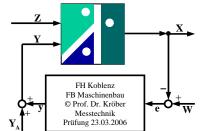


Hinweis: Rechnen Sie <u>nicht</u> mit der linearisierten Brückenformel!

Aufgabe 4 (6P)

Die abgebildete Schaltung wird zur Nullpunkteinstellung verwendet. Bestimmen Sie die Ausgangsspannung u_a sowie den Strom i_3 !

Aufgabe 5 (10P)

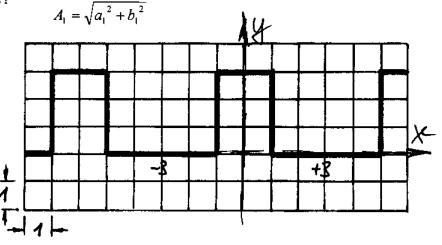

An dem abgebildeten RC-Glied liegt am Eingang eine sinusförmige Eingangsspannung (Frequenz f = 100 Hz) an. Der Spitzenwert der Eingangsspannung beträgt 2,0 V, der Spitzenwert der Ausgangsspannung beträgt 1,0 V. Der Widerstand R sei 20 k Ω .

- a. Wie groß ist die Kapazität C des Kondensators?
- b. Der Widerstand R und der Kondensator C werden vertauscht. Wie groß ist dann der Spitzenwert

 u_{α} Иe der Ausgangsspannung? OV Hochpass:

$$G = \frac{u_a}{u_e} = \frac{1}{1 + j\omega RC}$$

$$G = \frac{u_a}{u_e} = \frac{j\omega RC}{1 + j\omega RC}$$

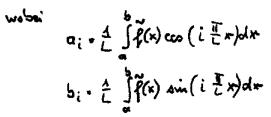


Aufgabe 6 (10P)

Wie groß ist die (Gesamt-)Amplitude $A_{\rm l}$ der Grundschwingung des abgebildeten Messsignals?

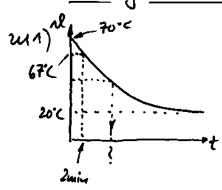
Hinweis:

Das Koordinatensystem kann/sollte so gelegt werden, damit sich eine möglichst einfache Rechnung ergibt.


Mögliche Hilfestellungen:

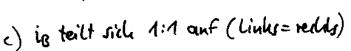
$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + C \qquad \qquad \int \cos(ax)dx = +\frac{1}{a}\sin(ax) + C$$

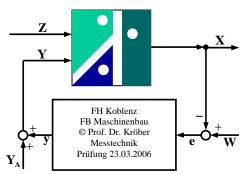
$$\int \cos(ax)dx = +\frac{1}{a}\sin(ax) + C$$


Sei f(x) eine periodische Tunktion der Periode 2L, dann Light sich f(x)durch eine Reihenenhnicklung approximieren:

 $f(x) = \frac{q_0}{2} + \sum_{i=1}^{n} a_i \cos(i \frac{\pi}{L}x) + \sum_{i=1}^{n} R_i \sin(i \frac{\pi}{L}x)$

Läsungen Prifung Messtadinik vom 23.03.06 1 Blott 1


$$\frac{50\%}{47\%} = e^{+\frac{1}{1}} = \frac{1}{2m^{\frac{50}{17}}}$$


$$= \frac{2m^{\frac{50}{17}}}{2m^{\frac{50}{17}}} = 32,32m^{\frac{1}{17}}$$

with
$$\mathcal{E}_{z} = \frac{\overline{f}}{f_{z}} = \frac{\overline{f}}{f_{z}} = \frac{\overline{f}}{f_{z}} = \frac{\overline{f}}{f_{z}} = \frac{f_{z}}{f_{z}} = \frac{f_{z}}{f_{z}}$$

$$\frac{w}{w_{R}} = \frac{k}{4} \left(2 \cdot \mathcal{E}_{18} - 2\mathcal{E}_{18} \right) = \frac{k}{2} \left(\mathcal{E}_{2} - \mathcal{E}_{1} \right) = \frac{k}{2} \left(\frac{16 \cdot \mathcal{F}}{3 \cdot 17 \cdot \mathcal{E} \cdot d^{2}} - \left(- \right)^{2} \frac{16 \cdot \mathcal{F}}{15 \cdot 17 \cdot \mathcal{E} \cdot d^{2}} \right)$$

240,2 = 240,2 = 240,2 (1) 2402 panellel zu 2402 -1202 Rp= 12+1202+12=1222

Läsungen Pritung Messtedmill vom 23.03.06 1864+2

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{19} = 0$$

$$\frac{1}{10} + \frac{1}{12} + \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1}{10} = \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1}{10} = \frac{1}{10} = \frac{1}{10} = 0$$

$$\frac{1}{10} + \frac{1$$

$$A_{n} = \sqrt{\alpha_{n}^{2} + \beta_{n}^{2}} = |\alpha_{n}| = \frac{3.\sqrt{3}}{\pi} \approx 1.65 \text{ K}$$

$$= ... = + \frac{3.\sqrt{3}}{\pi}$$

$$= ... = + \frac{3.\sqrt{3}}{\pi}$$