Datum: 66.07 2000 10.00 ULr

Fachhochschule Koblenz Fachbereich Maschinenbau Name: Matr.-Nr.:

Semester:

Diplomvorprüfung Thermodynamik I SS 2000 nach (neuer) Prüfungsordnung vom 22.05.1998 Klausur Wärmelehre I nach (alter) Prüfungsordnung vom 28.09.1981

Prof.Dr.-Ing.W.Nieratschker

Note	Aufgabe 1 Punkte	2 3	4	5	6	7	Summe
Hinweise: Ti beschriften!	ragen Sie <u>auf jedes</u>	Blatt ob	en Nam	e und	Matrik	elnumm	er ein! Nur Vorderseiten
Aufgaben	Bearbeitungsze	it zı	ıgelass	ene Hi	lfsmitt	el	
Teil I: 1-4	35 min	k	eine; Ab	gabe j	frühest	ens nac	h 25 spätestens nach 45 min
Teil II:5 -7	55 min	T	aschenr	echnei	r, Forn	nelsamn	nlungen,ausgeteilte Diagramme
161111.5-7					D - :	ielaufga	1 1

	_	•	-
Δι	110	abe	. I
T	шқ	auc	, ,

Aufgabe 1 Definieren Sie die folgenden Begriffe: a) Diatherme Wand b) Abgeschlossenes System c) Thermisches Gleichgewicht d) Thermodynamisches Gleichgewicht e) kalorische Zustandsgrößen (2 Beispiele je mit Einheit) f) Prozeßgrößen (2 Beispiele je mit Einheit)	1 1 1 2 2 2 8P
Aufgabe 2 Welche spezifischen Wärmekapazitäten sind von besonderer Bedeutung und wie hängen diese	
a) bei idealen Gasen und	2
b) bei festen und flüssigen Körpern zusammen?	2
	4P
Aufgabe 3	2
a) Formulieren Sie den ersten Hauptsatz für geschlossene Systeme!b) Formulieren Sie den ersten Hauptsatz für offene Systeme!	2 2
c) Wie ändert sich die innere Energie bei isochoren Zustandsänderungen?	2
Wenden Sie den ersten Hauptsatz an!	2
d) Wie ändert sich die Enthalpie bei isobaren Zustandsänderungen?	2
Wenden Sie den ersten Hauptsatz an!	2
e) Wie groß ist die technische Arbeit bei isothermen Zustandsänderungen idealer Gase?	2
	10 P
Aufgabe 4	
Wie sind die folgenden Begriffe definiert?	2
a) Raumanteil r _i	2
b) Massenanteil ξ_i und	2
c) Molanteil ψ _i	2
Bitte in Worten definieren!	6 P
	OI

Summe Teil I: 28 Punkte

Name:

Matrikelnummer:

Αι	itgab	e o
In	einen	n 1

Aufgabe 5	
In einem 10 [1] großen adiabaten Zylinder wird Luft im Zustand 1 (p = 1 [bar];	
$t = 15$ [°C]) durch einen Kolben zunächst auf den Zustand 2 mit dem Volumen $V_2 = 1$ [l	[]
komprimiert. Die Luft kann hierbei als ideales Gas betrachtet werden. Bei stillstehenden	n Kolben wird
die Luft danach wieder auf die Ausgangstemperatur von t ₃ = 15 [°C] heruntergekühlt und	d
ansschließend bis auf $V_4 = 0,1$ [1] weiter adiabat reversibel verdichtet.	
a) Stellen Sie die Folge der beschriebenen Zustandsänderungen im p,V - Diagramm da	r! 2
b) Welche Volumenänderungsarbeit in [kJ] ist für jede Teilverdichtung erforderlich?	4
c) Geben Sie für die Zustände 2, 3 und 4 jeweils die fehlenden thermischen Zustandsgr	rößen p in
[bar], V in [l] und t in [K] an!	18
d) Wieviel Wärme ist bei der Zwischenkühlung abzuführen?	2
e) Wie ändern sich bei der Zwischenkühlung die innere Energie und Enthalpie der Luft	
	30 P
Aufgabe 6	.003 11 1
5 kg Helium expandieren in einem geschlossenen System von $p = 10$ [bar] und $t = 400$ [°C] reversibel
auf	
2 [bar] und 120 [°C].	2
a.) Mit welchem Polytropenexponenten verläuft die Expansion?	3
b.) Welche Volumenänderungsarbeit wird verrichtet?	2 2
c.) Wieviel Wärme wird zu- oder abgeführt?	4
d.) Wie ändern sich innere Energie und Enthalpie?	-
	11 P
Aufgabe 7	W.10170
5,0 [kg] Methan von 0 [°C] und 0,1013 [MPa] werden mit 3 Normkubikmeter Luft (21 '	Vol O_2 und 79
Vol% N ₂) gemischt.	
Gesucht sind:	6
a) die Massenanteile in der Mischung,	6
b) die Gaskonstante der Mischung, sowie	2 3
c) die Raumanteile in der Mischung	پ
•	11 P
Summe Teil II: 52	111
Summe 160 11, 32	

ges. Punktzahl: 80

Prof. Dr.-Ing.W.Nieratschker

Donnerstag, 10. Februar 2000

45. Luft,
$$P_{1} = 1 \text{ bar}$$
; $f_{2} = 15^{\circ}C$; $T_{3} = 288,2 \text{ k}$; $V_{4} = 101$
 $V_{2} = 11$
 $V_{5} = 11$
 $V_{7} = 11$

$$V_{34} = \frac{P_{3}V_{3}}{K-1} \left[\left(\frac{V_{4}}{V_{2}} \right)^{K-1} - 1 \right] V_{3} = 0.11$$

$$= \frac{10^{\frac{1}{5}} \cdot 10^{-2} \left[\frac{1}{0.1} \right]^{0.4}}{0.4} - \frac{1}{1} \left[\frac{V_{4}V_{3}}{V_{3}} \right]^{-1} \left[\frac{V_{4}V_{4}}{V_{3}} \right]^{-1} \left[\frac{V_{4}V_{4}}{V_{4}} \right]^{-1} \left[\frac{V_{4}$$

73 = To gitt zwiche de Enstande 14013:

C)
$$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\frac{1}{N}} \longrightarrow P_2 \cdot P_3\left(\frac{V_1}{P_2}\right)^{\frac{1}{N}}$$

C)
$$\frac{R_2}{R_1} = {\binom{N_1}{N_2}}^{N_1} \sim R_2 \cdot R_3 {\binom{N_1}{N_2}}^{N_3}$$
 10 of $\frac{N_2}{N_3} = \frac{N_2}{N_3} = \frac{N_2}{N_3} = \frac{N_2}{N_3} = \frac{N_3}{N_3} = \frac{N_3}{$

$$h = \frac{P_1 V_1}{R T_1} = \frac{10^5 \cdot 10^{-2}}{2624 \cdot 248 \cdot 2} = \frac{N \cdot m^2 V_1 k}{m^2 J_2 k} = 0 \text{ cally}$$

$$V_2 = \frac{V_2}{m} = 0.0827 \frac{m^3}{45}$$

Foster Aufo 5

d.) Q23 - m.c. (T3-T2)

= a 2 . R. (3-2)

= 0,0121. 24 :212,1 (246,2-7238) Kg WK

= -3,78 k7

e, U3-U2 = Q2 + 423, de isoclos

4-12 = G3 = -3,78 k7

 $H_3 - H_2 = Q_{23} + V_{\pm 23} = Q_{23} + \int V d_1 s = Q_{23} + V_2 / d_2 s$

= $Q_{23} + V_2 / (3 - P_3) = -3,78 + 10^{-3} u^3 (10 - 25,1) \cdot 10^5 \frac{N}{u^2}$

= - 5,29 k7

6.)
$$polish = 3.5$$

$$\frac{P_{2}}{P_{3}} = \left(\frac{T_{2}}{T_{3}}\right)^{\frac{M}{M-1}} - L = 2L = \frac{R_{2}}{R_{3}} = \frac{M}{M-1} + L = \frac{T_{2}}{T_{3}}$$

$$\frac{M-1}{M} = \frac{\ln \frac{T_{2}}{T_{3}}}{\ln \frac{R_{2}}{R_{3}}} - L = \frac{1-\frac{1}{M}}{M} = A - \frac{1}{M} = A - A$$

$$M = \frac{1}{1-\frac{\ln \frac{T_{2}}{M}}{\ln \frac{R_{3}}{R_{3}}}} = \frac{1-\frac{1}{M}}{\frac{\ln \frac{393}{M}}{673,2}} - \frac{1,502}{\ln \frac{3}{R_{3}}}$$

6.)
$$W_{12} = \frac{m \cdot R \cdot T_1}{n-1} \left[\left(\frac{T_2}{T_1} - 1 \right) \right] \quad \text{and} \quad R = R_{1e} = 2,0772 \quad \frac{k_0^2}{4/K}$$

$$W_{12} = \frac{5 \cdot 2,0222 \cdot 643.2}{1,502-1} \left[\left(\frac{393.2}{673.2} - 1 \right) \right] \left[\frac{k_1 \cdot k_1^2 \cdot k_1^2}{4/K} \right] = -5,7977$$

C.)
$$q_{12} = m C_V \frac{h-K}{h-1} (T_2 - T_1) = m \cdot \frac{R}{K-1} \cdot \frac{n-K}{h-1} (T_2 - T_1)$$

$$= 5 \cdot \frac{2,0202}{1,502-1} \cdot \frac{1,502-1,66}{1,502-1} (120-400) \cdot \frac{1}{4_V} \cdot \frac{k_V^2 \cdot k_V^2}{k_V} \cdot K$$

$$= 5 \cdot \frac{3,0202}{1,502-1} \cdot (-0,3142) \cdot (-260) = 1,39 77$$

A 75 Sty CHy with Nowledge 12 to fee with
$$h_1 = 3 m_0^3$$

(1) $m_2 = \frac{R_1 h_1}{R_1 T_0} = \frac{1008 \times 10^{-3} \cdot 3}{127 \times 3000} = \frac{1273 \times 5}{127 \times 3000} = \frac{1273 \times 5}{127 \times 5} = \frac{127$

Nz = 0,237