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Abstract

We introduce the concept of streamballs for flow visu-
alization. Streamballs are based upon implicit surface
generation techniques adopted from the well-known
metaballs. Their property to split or merge automati-
cally in areas of significant divergence or convergence
makes them an ideal tool for the visualization of arbi-
trary complez flow fields. Using convolution surfaces
generated by continuous skeletons for streamball con-
struction offers the possibility to visualize even tensor

fields.

1 Introduction

1.1 Streamlines and stream surfaces

Streamlines, streaklines, pathlines and timelines play

an important role in flow visualization. Most of these
terms are directly derived from experimental flow vi-
sualization, where the corresponding phenomena are
generated by inserting foreign material into the flow
and observing it while it moves through the field.

o Streaklines are produced by continuously inject-
ing material like smoke or little hydrogen bubbles
into the flow at certain points and watching the
resulting clouds of particles.

o Pathlines can be obtained by putting small ob-
jects into the flow field and exposing a photo-
graph for a longer time, thus depicting the traces
of these objects over time.

¢ Timelines are given by observing a line of particles
flowing with the stream and making snapshots at
several time steps.
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e Streamlines finally are defined as curves tangent
to the velocity field in every point.

For steady flows streaklines, pathlines and stream-
lines obviously coincide [7].

In computational flow visualization, streak-, path-,
time-, and streamlines are often simulated to get an
insight into the structure of a flow field. Though these
constructions are powerful tools for the investigation
of two-dimensional fields, they are not very well suited
for the visualization of three-dimensional field data as
they heavily suffer from display ambiguities when be-
ing displayed in two dimensions on a computer screen.
Therefore, streak-, path-, stream-, or timelines are of-
ten used to build time surfaces or streak-, path-, and
stream ribbons, -tubes, or -surfaces, which in conjunc-
tion with standard lighting and shading techniques
can provide a much better idea of the overall topology
of a 3D flow field. Furthermore, local parameters of
the field can be mapped onto these surfaces and thus
be displayed together with the field’s velocity struc-
ture.

1.2 Previous work

Many new techniques for flow visualization have been
presented in the last few years [7].

Schroeder et. al. [8] introduced the stream polygon
technique, where n-sided, regular polygons perpen-
dicular to the local velocity vector are placed along
a streamline. Effects like twist or scalar parameters
of the field are displayed by accordingly rotating and
shearing the polygons or changing attributes like ra-
dius or color. By sweeping stream polygons along
streamlines, three-dimensional stream tubes can be
built.



Another method is the generation of stream sur-
faces by connecting adjacent streamlines with poly-
gons. Special care has to be taken whenever diver-
gence of the flow causes adjacent streamlines to sep-
arate or convergence causes streamlines to come very
close to each other, as the polygonal approximation
may become poor in these cases.

Helman and Hesselink [4] proposed an algorithm
which connects the critical points of the vector field
on the surface of an object to form a two-dimensional
skeleton. This skeleton represents the global topology
of the flow on the surface. Starting from points on
the skeleton, streamlines in the flow around the object
are calculated. By tesselating adjacent streamlines,
stream surfaces are built. To avoid splitting of the
stream surfaces in areas of divergence, the surfaces are
recursively refined by introducing additional starting
points for the streamline calculations.

Hultquist [5] introduced an algorithm which simul-
taneously traces a set of particles originating from dis-
crete points on some curve through the field and con-
nects the resulting paths with triangles. In this way,
an advancing front of a steadily growing stream sur-
face is obtained. Whenever the divergence between
two of these particles becomes too big, new particles
are inserted into the front; when particles come too
close to each other, some of them are removed.

Van Wijk [9] proposed the usage of so-called surface
particles for flow visualization. With this technique, a
big number of particles released from a number of par-
ticle sources are traced through the flow field. By po-
sitioning the particle sources on a curve and displaying
all particles as small geometric primitives shaped and
coloured in dependency of certain field parameters,
the impression of stream surfaces textured according
to local parameters can be given.

A different approach which guarantees the genera-
tion of smooth stream surfaces was also introduced by
Van Wijk [10]. The central concept of this method is
the representation of stream surfaces as implicit sur-
faces f(z) = C representing the sweep of an initial
curve through the field. The shape of the initial curve
is defined by the value of f at the inflow boundaries.
To calculate f, Van Wijk proposes two methods: solv-
ing the convection equation or tracing backwards the
trajectories of grid points. The same technique can be
used for the construction of time surfaces or stream
volumes.

1.3 Overview

In this article we present a new method for flow visu-
alization based upon implicit surface generation tech-

226

niques adopted from metaballs. We call the resulting
objects streamballs.

In particular, streamballs are distinguished by their
ability to split or merge with each other automatically
depending on their distances. By advancing appropri-
ate skeletons through the field and displaying the re-
sulting streamballs, streak-, stream-, path-, and time-
lines as well as -surfaces, or -volumes can easily be vi-
sualized, no matter how complex the given field may
be. The mathematical representation of streamballs
offers a variety of mapping possibilities for parame-
ters of the flow field.

Section 2.1 introduces the concept of streamballs
defined by a set of discrete centerpoints and their
usage in flow visualization. In Section 2.2, the con-
cept of streamballs constructed from continuous two-
dimensional skeletons, which open up a wider range
of visualization possibilities, is introduced. In Sec-
tion 2.3, some mapping techniques for streamballs are
presented. The rendering method that we used is de-
scribed in Section 2.4. Finally, Section 3 contains a
short summary and concluding remarks.

2 Streamballs
2.1 Streamballs with discrete skeletons

2.1.1 Basic concept

In 1982, Blinn [1] introduced the usage of implicit
surfaces to display molecular compounds. With his
method, a potential field F defined by a finite set S of
centerpoints s; is used to generate an implicit surface
which represents the molecules.

At a given point z in space, F(S,z) is given as the
sum of weighted influence functions I;(z) generated by
each of these centers:

F(S,z) = Zwili(m) = Ewie‘“‘f"(z), (1)

where f;(z) describes the shape, a; the size, and w;
the strength of the potential field.

Based on this field an isosurface F(S,z) = C is
constructed.

For example, if there is only one centerpoint s; and
if a) = gz and fi(z) = ||z — s1||?, the resulting iso-
surface will be a sphere whose radius depends on R.

G. Wyvill et. al. [11] used a similar technique to
construct what they called soft objects. To localize



the influence of the centerpoints and to avoid the com-
putation of the exponential function, they applied the
following polynomial approximation:

afiR!IZG +bfiR($!4 +

Ii(z) + c%%ﬁ +1: fi(r) <R

()
0 : filz) >R
with fi(z) = ||z — s;|| and a, b, and c chosen to satisfy
L{0)=1 I(05)=05 L(R)=0

L;(0)=0 L(R)=0
The described primitives are commonly known as

metaballs or blobby objects. Metaballs are distin-
guished by numerous useful properties:

e A single centerpoint generates a single, spherical
surface.

o As two centerpoints come close, their correspond-
ing shells blend smoothly, i.e. the resulting surface
is C'*°-continuous.

e If two or more centerpoints coincide, a single,
larger sphere is produced (in fact, if the value of
C is chosen properly, the sphere generated by two
of such centers will have exactly twice the volume
as a sphere produced by one single centerpoint).

e as two centerpoints separate, the blending process
is reversed.

2.1.2 Discrete streamballs

The basic idea for visualizing flow data with stream-
balls is to use the positions of particles in the
flow as centerpoints for implicit surfaces, which then
by blending with each other form three-dimensional
streamlines, stream surfaces etc. The centerpoints can
be looked upon as a discrete skeleton of the surface
constructed in this way. Referring both to the term
metaballs and to the usage of discrete skeletons we
call the resulting three-dimensional objects discrete
streamballs.

To represent a streamline using discrete stream-
balls we simply distribute a number of centerpoints
along this streamline close enough to each other to
let the surrounding isosurfaces blend. This blend-
ing process is shown in Figure 1. By increasing the
number of centerpoints s; step by step, a continu-
ous, three-dimensional representation of a streamline
is produced.

Figure 1: The blending process of the streamballs.

To construct stream surfaces, a number of particles
originating from different positions on some starting
curve are advanced through the flow field. Their posi-
tions at several time steps are used as a skeleton for the
streamballs. When the particles initially are close to
each other, they will produce a continuous and smooth
surface, which will split automatically in areas where
divergence occurs, and merge automatically in areas of
convergence. An example for this can be seen in Fig-
ure 2, where the flow around an obstacle, simulated
by the combination of a source and a sink, is shown.
Notice how the streamballs split around the obstacle
and merge again behind it. Color is used to map the
velocity of the flow.

Figure 2: Discrete streamballs flowing around an ob-
stacle.

Time surfaces for any given time t = t; + At are
built by distributing skeleton points on a starting sur-
face at a time ¢t = ¢y and letting them flow with the

(See color plates, page CP-25.)
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Figure 3: Three snapshots of a time surface hitting an
obstacle.

field for a time At. Figure 3 simultaneously shows
three snapshots of a time surface hitting the same ob-
stacle as in Figure 2. Though the time surface splits
on the obstacle, the obstacle’s shape can clearly be
seen.

Stream volumes of arbitrary initial shape are gen-
erated by advancing a cloud of particles through the
flow field, which are initially arranged to form the de-
sired shape, and using their positions over time as a
skeleton for the streamballs.

As can be seen from the figures, streamballs have
the convenient property to split automatically in areas
of significant divergence and to merge with each other
in areas where convergence occurs. This behavior is a
natural consequence of the properties of metaballs.

Thus, streamballs will not necessarily produce
closed stream surfaces. The way in which streamballs
behave in such cases, however, can give valuable in-
formation on the structure of the flow. In order to
produce closed surfaces nevertheless, one can simply
release additional particles in areas of high divergence.

2.2 Streamballs with continuous skele-
tons

2.2.1 Basic concept

Bloomenthal and Shoemake [2] generalized the idea of
metaballs proposing the usage of an arbitrary skeleton
consisting of a continuum of points (i.e. lines, curves
etc.) instead of a limited number of centerpoints to
generate the influence function.

The field function F is given by the convolution of
the skeleton’s characteristic function x,(z) with the
weighted influence function I(z):

Fun=&@wmm=/wmme @)

£es

Using an exponential influence function, we get
z— 2
FSo= [woe e o)
£eS
The convolution surface is given by building an iso-
surface F(S,z) =C.
To get reasonable computation times, we used an

influence function similar to the one we already used
for the streamballs with discrete skeletons:

af(€,z)® +bf(€,2)* +
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and
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flem) = =Ll (7)

again with a,b, and c chosen to satisfy the conditions
(3).

The objects generated in this way preserve all useful
properties of Blinn’s implicit surfaces.

2.2.2 Continuous streamballs

Convolution surfaces with continuous skeletons are a
powerful tool for flow visualization. They provide the
ability to produce perfectly smooth surfaces around
their skeletons.

With the discrete streamballs, we used a set of par-
ticle positions as a skeleton for an implicit surface.
Now we use these points to construct a continuous
skeleton which in turn generates the implicit surface.

To represent a streamline, for example, we trace a
particle along this streamline through several discrete
time steps and connect the single particle positions to
build the skeleton of the streamball. The resulting
three-dimensional streamline generally will be thin-
ner and more regular than one produced by discrete
streamballs using the same points as a skeleton.

Stream surfaces again are constructed from a set of
three-dimensional streamlines which are very close to
each other (Figure 4).

Similarly, time surfaces are built of a number of
three-dimensional timelines.

(See color plates, page CP-25.)
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Figure 4: A stream surface produced by a rake of 100
3D-streamlines in a flow field containing a vortez.

When time surfaces are traced through the field,
special attention has to be paid to obstacles to prevent
the time surfaces from being pulled ”through” the ob-
stacle. This problem can be overcome by controlling
the length of the skeleton segments and dividing them
if necessary.

2.3 Mapping of local field parameters

Streamballs offer a variety of possibilities for the map-
ping of local field parameters. Besides standard map-
ping techniques, new mapping techniques based on the
mathematical representation of the streamballs can be
applied.

With discrete streamballs, for example, an easy
method to map the value of a local parameter along
a streamline is to choose the radius of the influence
functions of each skeleton point according to the pa-
rameter’s value at that point. The result is a three-
dimensional streamline whose diameter corresponds to
the magnitude of the parameter to map. In Figure 5
we used this technique to map the velocity of the flow.

A similar method has been used for the upper layer
of the streamballs shown in Figure 6. The radius of the
influence function of these streamballs was increased
at several discrete positions along the streamline. By
choosing the distances of these positions dependent
on the absolute value of the velocity of the field, a
good idea of this parameter’s value along the stream-
line is given. It can be seen clearly that velocity is
lower in front of the obstacle and higher on the side
of it. To increase the radius of the influence functions
at certain positions, we just placed discrete stream-
balls, each with a skeleton consisting of exactly one
centerpoint, along the streamline.

Figure 5: Discrete streamballs in a flow field contain-
ing a vortex. Both radius and color show velocity.

A different method has been used to map the ve-
locity on the surface of the lower layer of streamballs
in Figure 6.

Figure 6: Different mapping methods using stream-
balls.

With this mapping technique local scalar parame-
ters are mapped as roughness of the surface. For this,
the amplitude of a three-dimensional oscillating func-
tion F(z) is modulated by the value of velocity. The
potential function of the streamballs then is superim-
posed by F(z). For simplicity, we choose F' to be

F(z) = sin(fiz1)sin(fox2)sin(fzzs), (8)

where the f; are (not necessarily different) frequencies.

As the described mapping techniques influence only
the geometry of our streamballs, more common map-
ping techniques, using e.g. material properties of the

(See color plates, page CP-25.)
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surface, can be applied simultaneously. In all our fig-
ures we additionally used simple color mapping to de-
pict velocity.

The streamballs in the middle of Figure 6 show a
different color mapping method. The component of
the velocity which describes the deviation of the flow
from the central axis is mapped as color spots on the
surface of these streamballs. The density of the color
spots depends on the absolute value of the considered
velocity component.

Similar to a technique introduced by Hesselink and
Delmarcelle [3], continuous streamballs can be used for
the representation of tensor data. For this purpose the
skeleton is directed along a so-called hyperstreamline
(a curve tangent to the main eigenvector of a tensor
field). At every point of the skeleton a local coordinate
system (&1, &2,€3) is used with £; tangent to the main
eigenvector e; at this point and &; and &3 oriented in
the directions of the two eigenvectors es and ez which
are perpendicular to the main eigenvector. Choosing
the radius of the influence function in the directions
of & and &3 corresponding to the absolute values of
the two eigenvectors e2 and e3, an asymmetrical influ-
ence function can be constructed. The resulting iso-
surface will have an asymmetrical cross section with
orientation and diameter dependent on the directions
and eigenvalues of these two eigenvectors. Using some
mapping technique to show the eigenvalue of the main
eigenvector, it is possible to represent not only direc-
tion, but even the magnitude of all three eigenvectors
at the same time.

2.4 Rendering

For rendering, the field function F(S, z) of the stream-
balls is evaluated on a regular grid. The isosurface
F(S,z) = C is extracted from this grid by a simplified
marching cubes algorithm, and the resulting triangles
are rendered using Iris Explorer.

The modified marching cubes algorithm processes
the grid slice by slice, so only two slices have to be
held in memory at one time {6]. As the polynomial in-
fluence functions (2) or (6) are used, each part of the
skeleton has only a local influence on the field func-
tion. Therefore, when computing the values of the
field function for a grid point z, F(S,z) has to be
evaluated only for those parts of the skeleton which
are close enough to that grid point to influence the
potential field at z. This greatly reduces computation
costs.

For high grid resolutions, as they may be neces-
sary to see fine details, the huge number of triangles
generated by the marching cubes algorithm is a con-
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siderable drawback. For this reason we are working
on a fast adaptive triangulation algorithm, which will
both reduce the number of field function evaluations
and the number of triangles produced.

3 Summary

The proposed technique proves to be useful for 3D flow
visualization in several ways:

e The representation of streamlines, stream sur-
faces and stream volumes as well as time surfaces
is possible in a quite easy and natural way.

e Streamballs split or merge automatically in areas
of significant divergence or convergence. Valu-
able information on the flow is given by the way
in which the streamballs divide or blend in these
cases.

e Due to the underlying mathematical representa-
tion, streamballs provide powerful mapping pos-
sibilities for flow-related parameters. Hence, they
are not only suited for the examination of vector
fields, but can even be used for the exploration of
the complex structure of tensor fields.

e Streamballs can be applied even in cases of very
complex flow fields.
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